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Abstract. We consider a diamagnetically diluted induced-moment Heisenberg magnet in 
which the active sites have a singlet electronic ground state and an excited doublet state. 
Moments may be induced at the active sites by mixing the doublet into the singlet through a 
magnetic exchange interaction or an external magnetic field H,  applied parallel to the z 
direction. The single-ion Hamiltonian describing this system is -X = XI,J,,SLS, - AZ,(S,,)* - 
H,X,S,,, where A is the singlet-doublet separation. Using self-consistent mean-field cal- 
culations on computer-generated lattices in one, two and three dimensions, and with con- 
nectivities z = 2 , 3 , 4 , 6  and 8, we study the distribution of moments at T = 0 as a function of 
theconcentrationofdiamagneticimpurities, the ratioJ,,/A and H .  When H,  = 0, diamagnetic 
atoms rapidly reduce the value of the mean induced moment, leaving moments of significant 
size only in regions composed of active sites that are completely surrounded by other active 
sites. The sensitivity of the lattice towards dilution increases as z increases. The application 
of H,  compensates to some extent for the effect of the diamagnetic impurities, raising the 
meanmoment and reducing thevariance of the distributionof the size of individualmoments. 

1. Introduction 

A dilute induced-moment magnet (IMM) is an example of a system in which there is 
competition between an inhomogeneous inter-site potential V,, that favours order and 
a site-only potential V, that disfavours order. If V,, is sufficiently large relative to V,, an 
order-disorder transition may be observed on warming the system from T = 0. For a 
dilute IMM, V,  is provided by a crystal-field potential that favours a non-magnetic singlet 
electronic ground state and V,, is provided by a magnetic exchange interaction which 
induces a magnetic moment by mixing suitable excited electronic states into the ground 
state. An analogous system is provided by materials which show cooperative Jahn- 
Teller effects when pure and which are then diluted with Jahn-Teller inactive ions 
(Harley et a1 1974). Both types of material provide testing grounds for theories that 
purport to describe cooperative phenomena in inhomogeneous solids. 

Work on dilute IMMS has been focused on metallic alloys and most notably on the 
induced-moment antiferromagnet TbSb diluted with the diamagnet YSb (Cooper and 
Vogt 1970). There the magnetic exchange interactions have a long range and the effect 
of the diamagnetic dopant is satisfactorily treated using the mean-field approximation. 
Explicitly, this involves scaling the mean field linearly with the concentration of magnetic 
atoms. In insulating materials, in which the strength of the exchange interactions is 
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only significant between nearest or next-nearest neighbours, such an approximation is 
expected to be poor. A number of different theoretical tools have been developed to 
deal with such cases (Elliott et a1 1974). 

The only experimental work on diamagnetic dilution of insulating IMMS reported in 
the literature is that of Harrison and Visser (1989). In that case the pure magnet RbFeC13 
contains Fe2+ ions whose electronic ground state is a singlet, lmJ = 0), with a low-lying 
doublet, lmJ = k l ) ,  at an energy A .  The superexchange interaction mixes the doublet 
into the singlet and is sufficiently large to induce a moment in the pure material. On 
doping with the diamagnet RbMgC13, TN is found to drop more sharply than predicted 
by the mean-field approximation. 

Chalupa et a1 (1979) showed that one consequence of the fact that the exchange 
interactions are very short in range in an insulator was that under certain simplifying 
conditions the percolative properties of such a magnet mapped onto the bootstrap 
percolation problem. They considered the case of a singlet-triplet induced-moment 
Ising magnet with Hamiltonian 

. .  
ij i 

s =  - l , O , l  

where the magnetic exchange Jij and single-ion anisotropy A are positive and Si interacts 
with its z nearest neighbours. It was argued that to a first approximation a site could be 
considered to possess a magnetic moment in the magnetisation direction if m or more 
of its nearest neighbours also possessed a moment in that direction, where the integer 
m depended on the relative values ofJij and A .  In the bootstrap percolation problem the 
infinite cluster is made up of occupied sites that are also all connected to m or more 
occupied sites. This cluster is generated by first producing a lattice with a random 
occupancy p and then culling all sites that have fewer than m occupied nearest neigh- 
bours. If this cull is performed just once we have the highdensity percolation problem 
(Reich and Leath 1978, Turban 1979, Branco et a1 1986) and p,  is found to increase as m 
increases. The bootstrap percolation model is derived by repeating the culling until no 
more sites are vacated and the lattice is either empty or occupied only by compact 
clusters. As m is changed in the bootstrap percolation model, several different classes 
of percolation are found for two- and three-dimensional lattices of connectivity z .  When 
m is equal to 0 or 1, ‘ordinary’ percolation is found and for m equal to z the ‘trivial’ 
percolation limitp, = 1 is found. For intermediate values of m the geometric percolative 
behaviour is found either to be discontinuous (first order inp) or to show a second-order 
transition with critical exponents that depend onm, z and dimension d (Kogut and Leath 
1981, Khan et a1 1985, Branco et a1 1988). 

In this paper, we consider the effect of adding diamagnetic impurities to an insulating 
IMM with Heisenberg spin symmetry. The Hamiltonian is similar to (1) but the component 
of the spin in the magnetisation direction may now take a continuous range of values 
and it is also necessary to define the component of the spin that A acts on. One of the 
simplest examples of such a system is the singlet-doublet case described above. Thus, 
we shall consider the single-ion energy levels to be the same as those of Fe2+ in RbFeC13, 
where A is large relative to I,, acts on the t component of the spin and is positive. 
Consequently the moments have much larger moments in the x-y plane than along 
the z axis. The exchange constants will be assumed to be ferromagnetic for all the 
calculations, although the method is readily extended to spin arrays with a general 
ordering vector. The magnetisation axis is arbitrarily taken to be the x direction. 
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The excited doublet may also be Zeeman split by a magnetic field H applied parallel 
to the z direction, thereby altering the size and direction of the induced moments. So 
long as the applied field is not so large that the spins are pulled from the x axis to the z 
axis, this will compensate to some extent for the effect of dilution. The new Hamiltonian 
describing these interactions is then 

- X  = 2 JijSjSj - A 2 (S i , )2  - H ,  2 Si, (2)  
i j  i I 

where H, is the component of H in the z direction. The components of the moments in 
the magnetisation direction have a continuous distribution rather than taking the values 
0, +1 or -1 as in (1); so it is no longer possible to make the simplifying assumption that 
an atom only possesses a moment if there are m occupied neighbouring sites. Thus, we 
shall not only consider the percolative properties of such a lattice but also look at the 
relation between the spatial distribution of moments at T = 0 and the distribution of 
diamagnetic sites as a function of Z i j J i j / A ,  p and H, as z is increased. The cases to be 
considered are z = 3, 4 and 6 in two dimensions (honeycomb, square and triangular 
lattices) and z = 8 in three dimensions (hexagonal lattice). These will be compared with 
the cases z = 0 , l  and 2 (isolated moments, dimers and chains) and the mean-field model. 
Some comparison will also be made with real systems based on RbFeC13, but a full 
treatment of the changes in the magnetic ordering temperature and in the neutron 
scattering structure factor as the concentration of diamagnetic impurities is changed 
awaits the extension of these calculations to finite temperatures. 

2. Method 

All simulations were performed in FORTRAN on a VAX cluster composed of two VAX 
11/780 and two VAX 11/785 machines. One-, two- or three-dimensional lattices con- 
taining N sites were created in shapes that reflected the unit cell of the lattice to be 
studied-a rhombus for the honeycomb and triangular lattices, a square for the square 
lattice and a stack of rhombuses for the hexagonal lattice. We shall concentrate on the 
properties of the square lattice ( z  = 4) and also make extensive comparisons with lattices 
of different connectivities. 

Using a random-number generator the sites were then occupied with probability p 
and given a uniform initial induced moment between 0.1 and 0.8. Periodic boundary 
conditions were employed, i.e. sites on an edge or a vertex were connected to sites on 
opposite edges or vertices. Each occupied site i was then taken in turn and the moment 
Si, in thex direction calculated using Hamiltonian (1) or (2). In the absence of an applied 
magnetic field, Six is given by 

B = 2 2 JUSjx  
i 

W 2  = A 2  + B2 

and the Boltzmann factor pn is given by 

(4) 

( 5 )  
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where n and m run over the three levels of the singlet-doublet system and the eigenvalues 
E,, are given by 

Eo = $ ( A  - W )  (7) 
El = A  (8) 
E2 = & ( A  + W ) .  (9) 

When a magnetic field is applied along the z axis the moment is calculated using the 
eigenvectors of 

I O  - B / f i  - B / f i l  

- B / f i  A - H z  0 

- B / f i  0 A + H ,  

This was diagonalised using the NAG library routine FO~ABF. For both the H, = 0 and 
the H ,  > 0 calculations the evaluation of the individual moments was repeated until 
there was a vcry small difference between successive values. The arbitrary value of 
0.000001 spin/site was found to produce consistent results; it was ascertained that 
the mean moment (SJP per active site for a given occupancy p and given starting 
configuration converged to the same value regardless of the initial value taken for the 
moment. The mean moment (SJ1 for the pure lattice converged to the value predicted 
by the analytic mean-field expression. 

These calculations were compared with the mean-field predictions in which the 
exchange field was set proportional top .  (S,), may be derived from (3) by setting S, = 
S,, = (St&. At zero temperature this yields 

For the pure magnet ( p  = 1) the critical ratio of JQ/A above which the magnetisation 
disappears at T = 0 is given by 

R,,,, = J Q / A  = 4 (12) 

where J ,  is the total exchange field in the ordered ground-state spin configuration. In 
the present set of simulations, we mainly use values of JQ/A that are 1% and 2% greater 
than RCrit, i.e. J Q / 6  = l.OIRcrit and 1.02RC,,, respectively. 

The cases z = 0 and z = 1 on an infinite lattice have simple exact solutions for the 
magnetisation as a function ofp :  

3. Results and discussion 

3.1. H, = 0, T = 0 

The results of simulations for z = 2 (d  = l ) ,  z = 3,4 ,6  (d  = 2) and z = 8 (d = 3) showed 
fluctuations in (,Sh)p/(S~)l at a given value of p owing to the influence of different 
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P 

Figure 1. The dependence of the mean magnetic moment (Su)p/(Su), in the x direction on 
the connectivity z and occupancyp of active sites in a lattice of size N = 104 at a temperature 
T = 0 for (a) J Q / A  = l.OIRcr,t and (b )  JQ/A = 1.02RC,,,. -, z = 0; ----, z = 1. , ?  + z = 2,  
d = 2 ; Y , z  = 3,d = 2 ;  0 , z  = 4,d = 2 ;  A , z  = 6 ,d  = 2 ;  A,z = 8 , d  = 3 ; 0 ,  themean-field 
case. 

starting configurations on the behaviour of a finite sample. These fluctuations were most 
pronounced at lower values of N , p  and z .  Thus, we display results for the largest lattices 
considered ( N  = lo4), averaging over three to five starting configurations for each value 
of p. Figures l ( a )  and 1(b) demonstrate the reduction in (,SJp/(,SJ1 a s p  is reduced for 
JQ/A = 1 .OIRcr,t and 1.02RCrit respectively. These curves change in a regular fashion with 
z between the known limits z = 1 and the mean-field case. They involve an average over 
all active sites and do not provide much information about the distribution of moments 
in the various lattices. Let us consider the influence of the diamagnetic sites on the 
distribution of the moments at a microscopic level. 

In the linear case ( z  = 2)  it is clear that a pair of diamagnetic impurities at a given 
separation create a void between them if JQ/A lies below some critical value (we define 
a void as a region composed of diamagnetic sites or active sites with zero induced 
moment). Conversely, for a fixed value of JQ/A there is a critical size above which 
clusters of finite induced moments are stable. In two- and three-dimensional arrays a 
similar criterion exists for the formation of voids. Such regions have to be separated 
from the infinite percolating cluster by diamagnetic sites and they must be smaller than 
a critical size that depends on the ratio J Q / A  and on the perimeter or surface area of the 
cluster of active sites. 

The induced-moment character of the active sites also has a profound effect on the 
percolating cluster. Let us first consider the case wherep is low and then the case where 
p approaches pc, the ordinary percolation threshold for site dilution of the appropriate 
lattice. Figures 2(a)-2(d) illustrate the spatial distribution of the individual moments 
(S,), for square lattices with occupancies p = 0.99, 0.98, 0.97 and 0.96, respectively 
and JQ/A = 1.02Rcfi,. When p = 0.99, regions where impurities lie close together are 



6700 A Harrison 

Figure 2. The distribution of induced moments on square lattices of size N = 104 containing 
active sites withJo/A = 1.02RC,,, for occupancies of ( a )  0.99, ( b )  0.98, (c )  0.97 and (d) 0.96. 
The size of the induced moment at each site is expressed as a fraction of the moment (Su)l in 
the corresponding pure magnet and denoted by one of four grey tones. The lightest shade 
corresponds to (0.0-0.25) (SJI and the darkest to (0.75-1.00) (Su)l. 

Figure 3 (opposite). The distribution of induced moments on (a) ,  (d) honeycomb, (b), ( e )  
square and ( c . )  (f) triangular lattices of the same size (N = 104). occupancy (p = 0.96), 
configuration of diamagneticimpuritiesandJ@/A = 1.02RC,,,. The honeycomb and triangular 
lattices have been distorted to adopt a square shape and the individual cells for ( a ) ,  (d), (b), 
( e )  and (c) .  (f) have the connectivity maps 

(a ) .  (4  < ( b ) , ( e )  # (+U) -a, 
(a)-(c) illustrate the distribution of sizes of induced moments using the same shading scale 
as figure 2. (d)-(f) show the effect of five successive cycles of culling sites with fewer than z 
nearest-neighbour active sites. The remaining active sites are black. 
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distinguished by the large depletion of moments on neighbouring active sites--‘giant 
holes’ are created. At p = 0.96, we observe the formation of islands of active sites with 
moments similar to those in the pure magnet, surrounded by a sea of diamagnetic sites 
and active sites with very small moments. The islands contain a high proportion of active 
sites with maximum local exchange interactions, i.e. active sites with all z neighbouring 
sites also occupied by active sites. We call this coordination saturation. In figures 3(a)- 
3(c) we compare the distribution of induced moments on honeycomb, square and 
triangular lattices, respectively, with identical configurations of diamagnetic impurities, 
occupancyp = 0.96 and J Q / A  = 1.02RC,,,. It is clear that, as z increases, (S,), decreases 
and the size of the islands of relatively large induced moments also gets smaller. 

When p approaches p c ,  it is helpful to consider the structure of the infinite cluster in 
terms of the ‘nodes-links-blobs’ picture (Coniglio 1982,1983, de Jongh et a1 1985). As 
defined originally, this model refers to the bond dilution case, and we refer to it here 
merely to describe the general structure of the infinite cluster nearp,. The infinite cluster 
is then envisaged as being constructed from three types of building unit: links are made 
up of bonds such that, if one of these bonds is cut, the cluster is broken into two pieces; 
nodes are the intersections of links; blobs are regions of high bond density and are not 
divided into two pieces just by cutting one bond. Blobs may also be nodes and at p c  are 
themselves composed of links and blobs in a self-similar fashion. Some of the blobs will 
contain very large collections of atoms with coordination saturation-so large that they 
would survive if they were isolated finite clusters. These regions will act on surrounding 
active sites in the nodes and links and in the smaller blobs, inducing moments at those 
sites. Although the exchange field will attenuate rapidly away from such large blobs, all 
the moments in the percolating cluster will be finite. The persistence of relatively large 
moments in the large blobs gives rise to the tails in the plot of (S,)p/(S,)l against p 
(figure 1). 

Thus, there are several aspects of the distribution of moments that change sys- 
tematically as z is increased for a given value of d and a given starting configuration at 
zero temperature and H, = 0. 

(i) The critical size above which a finite cluster may survive is increased. 
(ii) The resistance to the formation of ‘giant holes’ or regions of greatly diminished 

moments near high concentrations of diamagnetic sites decreases. 
(iii) The regions containing relatively large moments in the large blobs are reduced 

in size. 

These all stem from the increasing difficulty of producing regions of coordinatively 
saturated sites as z is increased for a given occupancyp and distribution of diamagnetic 
sites. 

Our problem is not as cleanly defined as correlated percolation models such as the 
high-density and bootstrap models because the sites that have coordination m < z still 
possess finite moments and are therefore still part of some cluster. However, some 
similarity might be expected between the structure of clusters in the high-density per- 
colation problem and the shape of the regions of frozen moments at finite temperatures. 

As the temperature is raised from zero, the ordered array of moments in the nodes 
and links and smaller blobs will rapidly melt, leaving moments in the larger blobs 
frozen in superparamagnetic clusters. In figures 3(d)-3(f), we illustrate the effect of 
successively culling sites with fewer than three, four or six nearest neighbours on 
honeycomb, square and triangular lattices, respectively, The occupancy p and con- 
figuration of diamagnetic sites are identical with those in figures 3(a)-3(c) and we display 
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Figure 4. The dependence on magnetic 
field H, applied parallel to the z axis and 
occupancyp of active sites of (S,), for the 
square lattice of size N = lo4, withJ,/A = 
1.02R,,i,. The different curves apply to the 
valuesp = 1.00,0.98,0.96,0.94,0.92,0.90 
and 0.85, decreasing in height as p 
decreases. 

H, ( A I  

the result of five successive culls. The remaining active sites adopt patterns that resemble 
the regions with the largest moments in figures 3(a)-3(c). Differences betwen the two 
sets of figures are also apparent. These reflect the fact that the culling is a sequential 
nearest-neighbour process and fails to mimic the long-range influence of impurity centres 
in the simulations, reaching beyond the current position of the culling front. 

3.2. H,  > 0, T = 0 

There are two principal changes seen in (Sjx)p/(Sk)l  when a magnetic field is applied 
along the z axis. 

(i) (S&,/(SJl rises with H ,  until H,  = A and then falls to zero as the moments are 
pulled towards the z axis (figure 4). Thus, moments may be induced in dilute materials 
that show no moment in zero field. 

(ii) Curves of (Sk)p/(Sk)l drawn for the same value of J Q / A  and different values of p 
almost converge at H, = A (figure 4). This implies that the values of individual moments 
may also tend to very similar values as H, is increased. Figures 5(a)-5(c) show the 
distribution of individual moment values (S& as a function of p and H,  for the square 
lattice. Figures 6(a)-6(c),  showing the distribution for linear, honeycomb and triangular 
lattices with occupancyp = 0.96, should be compared with figure 5(c) to show the effect 
of changing 2. Thus, forp = 0.96 on all the two-dimensional lattices shown the moments 
are small and adopt a broad distribution in low magnetic fields. At higher values of H,, 
two peaks are distinguishable. As H ,  is increased to A ,  the centres of these peaks become 
very close. Scrutiny of the spatial distribution of the moments reveals that the smaller of 
the two peaks at lower values of (S& corresponds to active sites adjacent to diamagnetic 
impurities. 

This result is consistent with some of the conclusions drawn from neutron scattering 
measurements on RbFeC1, doped with the isomorphous compound CsFeC13 (Harrison 
et al 1986). Pure CsFeC1, has a similar electronic structure to RbFeCl,, but the ratio 
JQ/A is now too small for a moment to be induced. On doping Cs' ions into RbFeC13, 
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local structural distortions are introduced that reduce the value ofJQ/A for neighbouring 
Fe2+ ions. Small amounts of CsFeC1, (less than 5 % )  destroy the magnetic long-range 
order seen in pure RbFeC13. The magnetic order may be restored to some extent by 
applying a magnetic field parallel to the crystal c axis. As H ,  is increased, the magnetic 
ordering temperature increases and the degree of magnetic inhomogeneity, measured 
in terms of the width of magnetically scattered neutron diffraction peaks, decreases. 

4. Conclusions 

The present set of simulations demonstrate that the distribution of moments in a dilute 
induced-moment magnet at T = 0 with nearest-neighbour magnetic exchange and Hei- 
senberg spin symmetry does not map onto the bootstrap percolation problem. Although 
the size of an induced moment is greatly reduced when the number of nearest-neighbour 
active sites is reduced, it remains finite so long as it is connected to regions of the lattice 
with a high density of coordinatively saturated sites. However, as the temperature is 
raised from zero and the ordered arrays of smaller moments melt, the regions of larger 
frozen moments should adopt shapes that resemble the active sites that remain after 
several culling cycles of the bootstrap percolation model. 

There is a need to extend this work to finite temperatures, performing Monte Carlo 
simulations to show how (S,), changes with temperature, and how thermodynamic 
variables such as the heat capacity and magnetic susceptibiltiy depend on p ,  J Q / A  
and lattice type. There is also much scope for experimental work, applying neutron 
diffraction techniques to dilute insulating Heisenberg induced-moment magnets to 
measure the distribution of the size and position of moments as a function of H,  and T.  
Materials basded on RbFeC1, or RbFeBr, are not ideal for this purpose because they 
contain a triangular antiferromagnetic spin array in their magnetically ordered ground 
state, and the frustration inherent in such an array will complicate the ordering processes 
in the dilute materials. However, the data available to date on diamagnetically diluted 
samples of these materials have revealed a general correspondence to the results of the 
simulations presented here. 
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